Сама долго мучилась с этой задачей( Пусть в треугольнике АВС равные стороны АВ и АС равны х, тогда большая сторона ВС равна 0.75*(х+х)=1.5х Так как треугольник равнобедренный, то биссектриса к основанию является медианой и высотой, то есть точка М делит основание пополам ВМ=МС=0.75х. Рассмотрим треугольник АМС. В нем угол АМС прямой, АМ=4 по условию.По теореме Пифагора АС^2=АМ^2+МС^2, то есть х^2=4^2+0.75х^2, откуда х=АС=16/корень из 7. Далее по теореме синусов АМ/синусАСМ=АС/синусАМС, то есть 4/синус АСМ =16/корень из 7, откуда синус АСМ=корень из 7/4. Проведем в треугольнике АМС высоту МН, это и будет искомое расстояние. Тогда в треугольнике МНС по теореме синусов МН/синус АСМ=МС/синус МНС. Угол МНС прямой, МС=0.75х=12/корень из 7, таким образом после подставления получаем, что МН=3
Пусть в треугольнике ABC с основанием AC проведена медиана AD. Медиана делит периметр треугольника на две части, одна из которых - AB+BD, а другая - AC+CD. Пусть AC=a, AB=BC=2b, BD=CD=b Тогда возможны 2 варианта: 2b+b=15, a+b=6 или 2b+b=6, a+b=15. Решив первую систему уравнений, получим b=5 и a=1, то есть длина основания 1, а длина боковой стороны 5*2=10. Решив вторую систему, получим b=2, a=13, то есть длина основания равна 13, а длина боковой стороны 4. Но этот вариант невозможен, так как в любом треугольнике длина одной стороны, меньше суммы длин двух других, то есть треугольника со сторонами 13, 4, 4 не существует. Значит, длина равна 10.
Пусть в треугольнике АВС равные стороны АВ и АС равны х, тогда большая сторона ВС равна 0.75*(х+х)=1.5х
Так как треугольник равнобедренный, то биссектриса к основанию является медианой и высотой, то есть точка М делит основание пополам ВМ=МС=0.75х. Рассмотрим треугольник АМС. В нем угол АМС прямой, АМ=4 по условию.По теореме Пифагора АС^2=АМ^2+МС^2, то есть х^2=4^2+0.75х^2, откуда х=АС=16/корень из 7. Далее по теореме синусов АМ/синусАСМ=АС/синусАМС, то есть 4/синус АСМ =16/корень из 7, откуда синус АСМ=корень из 7/4.
Проведем в треугольнике АМС высоту МН, это и будет искомое расстояние. Тогда в треугольнике МНС по теореме синусов МН/синус АСМ=МС/синус МНС. Угол МНС прямой, МС=0.75х=12/корень из 7, таким образом после подставления получаем, что МН=3