В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
anyagabova
anyagabova
15.11.2020 04:01 •  Геометрия

Надо. №1 докажите,что при осевой симметрии плоскости: б)прямая ,перпендикулярная к оси симметрии,отображается на себя. №2 докажите ,что при центральной симметрии плоскости б)прямая,проходящая через центр симметрии,отображается на себя.

Показать ответ
Ответ:
sonek987
sonek987
14.06.2020 23:37
1.
Дано: а⊥n, n - ось симметрии.
Доказать: а→а
Доказательство:
Пусть О = а∩n.
Отметим на прямой а произвольные точки А и В.
Построим точки A', B', симметричные точкам А и В относительно оси n. Для этого проведем лучи с началом в точках А и В перпендикулярно n.
Эти лучи будут лежать на прямой а, так как через точку  можно провести единственный перпендикуляр к прямой. A' и B' будут лежат на этих лучах, а значит, на прямой а. Значит, прямая а отображается на себя.

2.
Дано: прямая а, О - центр симметрии, О∈а.
Доказать: а→а
Доказательство:
Отметим на прямой а точку А. Для построения А' проведем луч АО. Луч будет лежать на прямой а, следовательно, и A' будет лежать на прямой а.
АО→OA' ⇒ прямая а отобразиться на себя.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота