В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Проведем окружность радиусом R=a с центром в точке М. Пересечение этой окружности с прямой I и даст нам точки на прямой I, находящиеся на расстоянии "а" от точки М. Проведем перпендикуляр МН из точки М к прямой I. Длина этого перпендикуляра - расстояние от точки М до прямой I. Если значение "а" больше расстояния от М до I, то имеем две точки на прямой I, находящиеся на расстоянии "а" от точки М. Если значение "а" равно расстоянию от М до I, то имеем одну точку на прямой I, находящуюся на расстоянии "а" от точки М. Если значение "а" меньше расстояния от М до I, то точки на прямой I, находящейся на расстоянии "а" от точки М не существует.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
Пересечение этой окружности с прямой I и даст нам точки на прямой I, находящиеся на расстоянии "а" от точки М.
Проведем перпендикуляр МН из точки М к прямой I. Длина этого перпендикуляра - расстояние от точки М до прямой I.
Если значение "а" больше расстояния от М до I, то имеем две точки на прямой I, находящиеся на расстоянии "а" от точки М.
Если значение "а" равно расстоянию от М до I, то имеем одну точку на прямой I, находящуюся на расстоянии "а" от точки М.
Если значение "а" меньше расстояния от М до I, то точки на прямой I, находящейся на расстоянии "а" от точки М не существует.