Если провести прямую параллельную к одной из диагонали то получим прямоугольный треугольник, у которой гипотенуза будет равна сумме оснований трапеций . Так как трапеция равнобедренная то , диагонали равны, пусть они равны d, тогда гипотенуза она же сумма оснований будет равна d√2. Тогда высоту можно выразить как d^2/d√2 = 16 , d=16√2 тогда гипотенуза будет равна √2*(16√2)^2 = √2*256*2 =32. Тогда площадь будет равна S=(32/2)*16=256
2)Если не хотите мучатся , все это понимать, есть такая теорема что высота будет равна средней линий этой трапеций ( лишь в случае равнобедренности и перпендикулярности диагоналей) то есть m=h (m средняя линия треугольника) тогда средняя линия треугольника будет равна полусумме оснований то есть сумма оснований будет равна 16*2=32, и того S=32*16/2=256
В равнобедренной трапеции: (d₁+d₂)/2=С, Где d₁ длина верхней линии, d₂ длина нижней, С длина средней линии. Отсюда: (17+d₂)/2=30, откуда d₂ = 43 Назовем вершины трапеции буквами: A, B, C, D. AB у нас будет боковой стороной, остальное и по логике легко распределить. Так вот AD = 43. Нам нужно найти угол A. cosA=(AD-BC)/(2AB)=26/40=13/20 cosB=cos(π-A)=-cosA=-13/20 ∠С=∠B, ∠A=∠D. Косинусы углов определены. Если интересует числовое значение в градусах, это можно высчитать самостоятельно по таблице, или в калькуляторе. В школьных, иль контрольных заданиях достаточно определить синус, косинус или тангенс (в крайнем случае котангенс) угла.
тогда гипотенуза будет равна √2*(16√2)^2 = √2*256*2 =32. Тогда площадь будет равна S=(32/2)*16=256
2)Если не хотите мучатся , все это понимать, есть такая теорема что высота будет равна средней линий этой трапеций ( лишь в случае равнобедренности и перпендикулярности диагоналей) то есть m=h (m средняя линия треугольника) тогда средняя линия треугольника будет равна полусумме оснований то есть сумма оснований будет равна 16*2=32, и того S=32*16/2=256
(17+d₂)/2=30, откуда d₂ = 43
Назовем вершины трапеции буквами: A, B, C, D.
AB у нас будет боковой стороной, остальное и по логике легко распределить.
Так вот AD = 43. Нам нужно найти угол A.
cosA=(AD-BC)/(2AB)=26/40=13/20
cosB=cos(π-A)=-cosA=-13/20
∠С=∠B, ∠A=∠D. Косинусы углов определены.
Если интересует числовое значение в градусах, это можно высчитать самостоятельно по таблице, или в калькуляторе.
В школьных, иль контрольных заданиях достаточно определить синус, косинус или тангенс (в крайнем случае котангенс) угла.