1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Смотрите рисунок. Нахождение стороны квадрата сводится к нахождению диаметра окружности. О-центр окружности. АК её диаметр. ОМ - перпендикуляр на АВ. АО и ВО - радиусы окружности. Значит ΔВАО - равнобедренный. В таком треугольнике перпендикуляр, опушенный из угла при равных сторонах является, так же и медианой. Значит ВМ = АМ = АВ/2 = 12√3+2 = 6√3 см. <ОАМ = 30 градусов. Значит МО = АО/2. Примем АО= R. Следовательно МО = R/2. Gо теореме Пифагора имеем АМ²+ОМ² = АО². Или (6√3)² +(R/2)² = R². Или 36*3 + R²/4 = R². Приведя к общему знаменателю имеем. 36*12 = 3R². Или 12*12=R². Отсюда R = 12 см. Сторона квадрата, описанного вокруг этой окружности, равна её диаметру = 2R = 2*12 = 24 см.
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Сторона квадрата, описанного вокруг этой окружности, равна её диаметру = 2R = 2*12 = 24 см.