8.Нужно вычислить градусные меры этих углов, затем сравнить получившиеся величины. 9.Середина отрезка-это точка, которая делит данный отрезок на две равные части. 11.Проходящий через вершину угла и делящий его пополам. 12.Чтобы найти длину отрезка AB надо сложить длины отрезков AC и CB. AB=AC+CB 13.линейка, циркуль и т. п. 14.Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами. 15.сложитьАОС и СОВ
35.25 1) Если окружность вписана в трапецию, то сумма ее оснований равна сумме боковых сторон, а т.к. трапеция равнобедренная, то боковые стороны равны. Значит, боковая сторона равна полусумме оснований.
(9+25)/2=17
2) найдем радиус окружности, вписанной в трапецию. Для этого опустим из вершин тупых углов высоты на большее основание, и рассмотрим треугольник со сторонами - высотой, боковой стороной трапеции, равной 17 и отрезком нижнего основания, отсекаемого высотой, он равен (25-9)/2=16/2=8, значит, высота трапеции равна
√(17²-8²)=√(25*9)=5*3=15, тогда радиус равен 7.5, а длина окружности равна 2*π*7.5=15π, отношение длины окружности к числу π равно
15π/π=15
35.27
Площадь треугольника равна 9²√3/4, с другой стороны, эта же площадь равна 9³/(4R), где R- радиус описанной окружности, отсюда 9³/(4R)=9²√3/4; 4R9²√3=9³*4⇒R=9³/(9²√3)=9/√3=3√3, площадь круга равна πR²=π*9*3=27π, отношение площади к числу π равна
27π/π=27
35.24
сторона ромба равна √((15/2)²+(20/2)²)=0.5√625=25*0.5=12.5
Площадь треугольника, на которые ромб разбивается диагоналями равна 0.5*(15/2)*(20/2)=75/2=37.5, с другой стороны, эта же площадь равна 0.5*12.5*r=6.25r, откуда r=37.5/6.25; r=6, длина окружности равна 2π*6=12π, искомое отношение длины окружности к числу π равно 12π/π=12
9.Середина отрезка-это точка, которая делит данный отрезок на две равные части.
11.Проходящий через вершину угла и делящий его пополам.
12.Чтобы найти длину отрезка AB надо сложить длины отрезков AC и CB.
AB=AC+CB
13.линейка, циркуль и т. п.
14.Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
15.сложитьАОС и СОВ
35.25 1) Если окружность вписана в трапецию, то сумма ее оснований равна сумме боковых сторон, а т.к. трапеция равнобедренная, то боковые стороны равны. Значит, боковая сторона равна полусумме оснований.
(9+25)/2=17
2) найдем радиус окружности, вписанной в трапецию. Для этого опустим из вершин тупых углов высоты на большее основание, и рассмотрим треугольник со сторонами - высотой, боковой стороной трапеции, равной 17 и отрезком нижнего основания, отсекаемого высотой, он равен (25-9)/2=16/2=8, значит, высота трапеции равна
√(17²-8²)=√(25*9)=5*3=15, тогда радиус равен 7.5, а длина окружности равна 2*π*7.5=15π, отношение длины окружности к числу π равно
15π/π=15
35.27
Площадь треугольника равна 9²√3/4, с другой стороны, эта же площадь равна 9³/(4R), где R- радиус описанной окружности, отсюда 9³/(4R)=9²√3/4; 4R9²√3=9³*4⇒R=9³/(9²√3)=9/√3=3√3, площадь круга равна πR²=π*9*3=27π, отношение площади к числу π равна
27π/π=27
35.24
сторона ромба равна √((15/2)²+(20/2)²)=0.5√625=25*0.5=12.5
Площадь треугольника, на которые ромб разбивается диагоналями равна 0.5*(15/2)*(20/2)=75/2=37.5, с другой стороны, эта же площадь равна 0.5*12.5*r=6.25r, откуда r=37.5/6.25; r=6, длина окружности равна 2π*6=12π, искомое отношение длины окружности к числу π равно 12π/π=12