Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.