центр описанной окружности в остроугольном и тупоугольном треугольнике - точка пересечения их серединных перпендикуляров.
1) Рисуем остроугольный треугольник, измеряем каждую сторону, делим эту величину на 2 и отмечаем точкой середину отрезка. АС=3,6см, значит середина отрезка АС=3,6÷2=1,8см. Отметив эту точку, с угольника проведём к ней перпендикуляр.
Так проделываем с другими двумя сторонами.
Отмечаем точку пересечения перпендикуляров О и фиксируем на ней острую ножку циркуля. Радиус описанной окружности - это расстояние от центра окружности к любой вершине треугольника.
Обозначив радиус, описываем окружность.
2) То же проделываем с тупоугольном треугольником. Только в тупоугольном треугольнике точка пересечения перпендикуляров находится вне его.
3) В прямоугольном треугольнике центром окружности является середина гипотенузы АВ.
Находим в ней середину по тому же принципу, что и в предыдущих треугольниках и радиусом будет расстояние от центра окружности до любой вершины треугольника. В данном случае гипотенуза равна 3,5см, тогда расстояние от точки О до вершины=3,5÷2=1,75см.
Объяснение:
центр описанной окружности в остроугольном и тупоугольном треугольнике - точка пересечения их серединных перпендикуляров.
1) Рисуем остроугольный треугольник, измеряем каждую сторону, делим эту величину на 2 и отмечаем точкой середину отрезка. АС=3,6см, значит середина отрезка АС=3,6÷2=1,8см. Отметив эту точку, с угольника проведём к ней перпендикуляр.
Так проделываем с другими двумя сторонами.
Отмечаем точку пересечения перпендикуляров О и фиксируем на ней острую ножку циркуля. Радиус описанной окружности - это расстояние от центра окружности к любой вершине треугольника.
Обозначив радиус, описываем окружность.
2) То же проделываем с тупоугольном треугольником. Только в тупоугольном треугольнике точка пересечения перпендикуляров находится вне его.
3) В прямоугольном треугольнике центром окружности является середина гипотенузы АВ.
Находим в ней середину по тому же принципу, что и в предыдущих треугольниках и радиусом будет расстояние от центра окружности до любой вершины треугольника. В данном случае гипотенуза равна 3,5см, тогда расстояние от точки О до вершины=3,5÷2=1,75см.
Объяснение:
1. Исходя из того, что точки расположены на окружности: полученный четырехугольник будет вписан в окружность.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
вторая сторона будет равна = 90 см
2. Сначала мы найдем, сколько астероид пролетел до того, как Супермен выехал ему навстречу:
40 * 3 = 120 км, значит ему осталось преодолеть
626 - 120 = 506 км.
Поскольку два тела движутся навстречу друг другу, мы можем найти время, через которое разделив расстояние на их суммарную скорость
40 + 100 = 140 км/ч.
t = U/S = 506 / 120 = ~4.2 часов.
Теперь найдем расстояние, который преодолел астероид за это время:
40 * 4.2 = 168 км.
И вычтем его из того расстояния, которое он уже пролетел за первые три часа:
506 - 168 = 338 км.