1 Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
Ясно, что минимальная длина отрезка MN будет при совпадении точек B и D и точек С и Е. В этом случае M'N' станет средней линией треугольника АВС и будет равна AB (AD)/2.
Оставим точку Е совпадающей с точкой С, а точку D отметим в любом месте на продолжении стороны АВ за точку В.
Тогда M'N - средняя линия треугольника АDC и равна AD/2.
Отметим точку Е в любом месте на продолжении стороны ВС за точку С. Получим треугольник M'MN в котором сторона MN > M'N, так как если провести окружность с центром в точке N радиусом NM', то касательная M'H к этой окружности будет пересекать прямую MN в точке Н.
Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
Доказательство в объяснении.
Объяснение:
Ясно, что минимальная длина отрезка MN будет при совпадении точек B и D и точек С и Е. В этом случае M'N' станет средней линией треугольника АВС и будет равна AB (AD)/2.
Оставим точку Е совпадающей с точкой С, а точку D отметим в любом месте на продолжении стороны АВ за точку В.
Тогда M'N - средняя линия треугольника АDC и равна AD/2.
Отметим точку Е в любом месте на продолжении стороны ВС за точку С. Получим треугольник M'MN в котором сторона MN > M'N, так как если провести окружность с центром в точке N радиусом NM', то касательная M'H к этой окружности будет пересекать прямую MN в точке Н.
MN = MH+HN =>
MN >(M'N = AD/2)
=> MN >AD/2.
Что и требовалось доказать.