∠ABH = 1/2 × ∠ABC = 1/2 × 150° = 75° (по свойству высоты равнобедренного треугольника).
∠BAH = ∠BCH = ∠AHB - ∠ABH = 90° - 75° = 15°
2) Рассмотрим ΔBC₁C:
∠BC₁C = 90°, ∠CBC₁ = ∠(ABC,α) = 60° так как BC₁∈α, a BC - сторона ΔABC ⇒ ∠C₁CB = ∠CC₁B - ∠CBC₁ = 90° - 60° = 30° ⇒ ΔBC₁C - прямоугольный ⇒ BC = 2BC₁ = 2×12 см = 24 см ⇒ AB = BC = 24 см
3) Далее воспользуемся с формулой площади ΔABC с известным углом:
S(ΔABC) = AB×BC×sin∠ABC - Площадь треугольника ABC с известным углом.
S(ΔABC) = 24 см × 24 см × sin∠150° = 576 см² × 1/2 = 288 см²
Объем - это площадь основания на высоту. Площадь основания есть площадь ромба, а высоту можешь найти исходя из того, что диагональные сечения есть прямоугольники, ширина обеих - высота, а длины равны длинам соответствующих диагоналей. Произведение диагоналей находишь из определения площади ромба. S= произведение диагоналей делённое пополам, то есть ab/2. Отсюда ab=60. Это же произведение можно ещё представить, как (96/h) *(40\h) = 3840/(h^2), где h - высота
Дано:
ΔABC - Тупоугольный равнобедренный
∠ABC = 150° AB = BC ∠(ABC,α) = 60°
CC₁⊥α BC₁ = 12 см
Найти:
S(ΔABC) - ? ∠CBC₁ - ?
1) Проведем высоту BH ⇒ BH⊥AC, следовательно:
∠ABH = 1/2 × ∠ABC = 1/2 × 150° = 75° (по свойству высоты равнобедренного треугольника).
∠BAH = ∠BCH = ∠AHB - ∠ABH = 90° - 75° = 15°
2) Рассмотрим ΔBC₁C:
∠BC₁C = 90°, ∠CBC₁ = ∠(ABC,α) = 60° так как BC₁∈α, a BC - сторона ΔABC ⇒ ∠C₁CB = ∠CC₁B - ∠CBC₁ = 90° - 60° = 30° ⇒ ΔBC₁C - прямоугольный ⇒ BC = 2BC₁ = 2×12 см = 24 см ⇒ AB = BC = 24 см
3) Далее воспользуемся с формулой площади ΔABC с известным углом:
S(ΔABC) = AB×BC×sin∠ABC - Площадь треугольника ABC с известным углом.
S(ΔABC) = 24 см × 24 см × sin∠150° = 576 см² × 1/2 = 288 см²
ответ: S(ΔABC) = 288 см², ∠CBC₁ = 60°
P.S. Рисунок показан в файле внизу↓
3840/h^2 = 60, откуда h^2 = 64, откуда h=8.
Объем равен 30*8 = 240