предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
Что и требовалось доказать.
+3 задание:
уголN=180-(69+37)=74
уголMNP=74/2=37
угол NPM=180-(37+69)=74
уголNPK=180-(37+37)=69
угол MPN=74
уголNPK=69
уголMPN больше угла NPK, то MPменшеРК
+4 задание:
С=180-76-66=38
ЕК - биссектриса => КЕС=38
С=КЕС => треугольник КЕС равнобедренный, КС=ЕК
В треугольнике против большего угла лежит большая сторона
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
+2 задание:
Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
Что и требовалось доказать.
+3 задание:
уголN=180-(69+37)=74
уголMNP=74/2=37
угол NPM=180-(37+69)=74
уголNPK=180-(37+37)=69
угол MPN=74
уголNPK=69
уголMPN больше угла NPK, то MPменшеРК
+4 задание:
С=180-76-66=38
ЕК - биссектриса => КЕС=38
С=КЕС => треугольник КЕС равнобедренный, КС=ЕК
В треугольнике против большего угла лежит большая сторона
DEK<D => DK<EK=КС DK<КС
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².