Т.к один из углов при основании равен 60, следовательно и другой угол равен 60, следовательно в сумме два угла при основании равны 120, 360-120=240, следовательно два угла равны по 60, и другие два по 120 градусов, т.к это равнобедренный треугольник. Значит боковые стороны равны. Периметр равнобедренной трапеции сумма всех ее сторон. Если провести две высоты из улов, то мы получим прямоугольник и ее основания равны 15см, дальше через синус острого угла равного 60 градусам, находим боковые стороны прямоугольного треугольника, полученного нами, он равен: sin60=X:17 ( это мы нашли катет прямоугольного треугольника, 49-15=34, 34:2=17), дальше синус 60=0,9, значит: 0,9=X:17, отсюда x=0,9*1,5=1,35см сторона BH1 (ну это трапеция ABCD, проводим высоты BH1 и CH2, получим прямоугольные треугольники ABH1 и CDH2), отсюда AH1=17, значит DH2 тоже, BH1=CH2=1,35, отсюда по теореме Пифагора находим гипотенузу AB в квдрате=289+1,8225=290,8225, квадратный корень этого числа=17,05см. Отсюда периметр=17,05+17,05+15+49=98,1. Нет нельзя описать, и вписать окружность. Надеюсь все понятно, и я
Точки, лежащие на коорданатной плоскости OXY, имеют координаты (x,y,0), где x,y - какие-то действительные числа. Значит, чтобы точка была удалена от плоскости OXY на 4, нужно, чтобы её аппликата (координата по оси OZ) была равна 4 или -4. Аналогично, чтобы точка была удалена от плоскостей OXZ и OYZ на 4, нужно, чтобы её координаты по осям OX и OY были равны 4 или -4. Значит, существует 8 точек, удовлетворяющих условию: (4,4,4), (4,4,-4), (4,-4,4), (4,-4,-4), (-4,4,4), (-4,4,-4), (-4,-4,4), (-4,-4,-4).