Продлим стороны AB и CD до пересечения друг с другом. Рассмотрим треугольник AED. По теореме о сумме углов треугольника: 180°=∠EDA+∠DAE+∠AED 180°=90°+∠AED ∠AED=90° Следовательно треугольник AED - прямоугольный. Рассмотрим треугольники AED и BEC. ∠AED - общий ∠EBC=∠EAD (т.к. это соответственные углы) Треугольники AED и BEC подобны (по первому признаку подобия треугольников). Тогда по определению подобия: AD/BC=AE/BE AD/BC=(AB+BE)/BE 48/3=(3+BE)/BE 16BE=3+BE 15BE=3 BE=1/5=0,2 Точка F - точка касания прямой CD и окружности. По теореме о касательной и секущей: EF2=BE*AE=BE*(AB+BE)=0,2(3+0,2)=0,64 EF=0,8 Рассмотрим треугольник BOK. О - центр окружности OB - радиус окружности OK - серединный перпендикуляр к хорде AB ( третье свойство хорды) OK=EF (т.к. KEFO - прямоугольник) KB=AB/2 (т.к. OK - серединный перпендикуляр) По теореме Пифагора: OB2=OK2+KB2 OB2=0,82+(3/2)2 OB2=0,64+2,25=2,89 OB=1,7 ответ: R=1,7
Биссектриса угла при вершине равнобедренного треугольника будет и медианой и высотой... обозначим ее длину (а) получившийся при этом прямоугольный треугольник получится равнобедренным... катеты у него равны: биссектриса = (а) и половина основания тоже (а) в этом прямоугольном равнобедренном треугольнике гипотенуза = 3 найдем катеты... 2a^2 = 9 ---> a^2 = 4.5 высота, опущенная на боковую сторону, будет в свою очередь и медианой... и опять из нового прямоугольного треугольника по т.Пифагора: x^2 + (1.5)^2 = 4.5 x^2 = 4.5 - 1.5*1.5 = 1.5*(3 - 1.5) = 1.5*1.5 x = 1.5
Рассмотрим треугольник AED.
По теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED - прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это соответственные углы)
Треугольники AED и BEC подобны (по первому признаку подобия треугольников).
Тогда по определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
48/3=(3+BE)/BE
16BE=3+BE
15BE=3
BE=1/5=0,2
Точка F - точка касания прямой CD и окружности.
По теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=0,2(3+0,2)=0,64
EF=0,8
Рассмотрим треугольник BOK.
О - центр окружности
OB - радиус окружности
OK - серединный перпендикуляр к хорде AB ( третье свойство хорды)
OK=EF (т.к. KEFO - прямоугольник)
KB=AB/2 (т.к. OK - серединный перпендикуляр)
По теореме Пифагора:
OB2=OK2+KB2
OB2=0,82+(3/2)2
OB2=0,64+2,25=2,89
OB=1,7
ответ: R=1,7
получившийся при этом прямоугольный треугольник получится равнобедренным...
катеты у него равны: биссектриса = (а) и половина основания тоже (а)
в этом прямоугольном равнобедренном треугольнике гипотенуза = 3
найдем катеты... 2a^2 = 9 ---> a^2 = 4.5
высота, опущенная на боковую сторону, будет в свою очередь и медианой...
и опять из нового прямоугольного треугольника по т.Пифагора:
x^2 + (1.5)^2 = 4.5
x^2 = 4.5 - 1.5*1.5 = 1.5*(3 - 1.5) = 1.5*1.5
x = 1.5