Вот смотри. Есть любой n-угольник. Мы в нем рисуем все возможные диагонали. В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам. Но к двум соседним углам идут стороны, а к остальным диагонали. Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей. А всего диагоналей в n-угольнике будет n*(n-3) Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2. Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.
Есть любой n-угольник. Мы в нем рисуем все возможные диагонали.
В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам.
Но к двум соседним углам идут стороны, а к остальным диагонали.
Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей.
А всего диагоналей в n-угольнике будет n*(n-3)
Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2.
Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.
1.Найти радианную меру угла, если его градусная мера равна- 10°, 30°, 150°.
радианная - z
градусная - g
g/180 = z/π
z = g·π/180
z₁ = 10*π/180 = π/18
z₂ = 30*π/180 = π/6
z₃ = 150*π/180 = 5π/6
2. Найти градусную меру угла, если его радианная мера равна: п/5, 2п/3, 7п/6.
g = 180*z/π
g₁ = 180/5 = 36°
g₂ = 180*2/3 = 120°
g₃ = 180*7/6 = 210°
3.Найти длину дуги окружности, радиуса 2см, отвечающей центральному углу 60°.
l = π·r·g/180
l = π*2*60/180 = 2π/3 ≈ 2,094 см
Вариант II
1.Найти радианную меру угла, если его градусная мера равна- 20°, 50°, 160°.
z₁ = 20*π/180 = π/9
z₂ = 50*π/180 = 5π/18
z₃ = 160*π/180 = 8π/9
2. Найти градусную меру угла, если его радианная мера равна: п/8, 3п/2, 5п/4.
g₁ = 180/8 = 22,5°
g₂ = 180*3/2 = 270°
g₃ = 180*5/4 = 225°
3.Найти длину дуги окружности, радиуса 3см, отвечающей центральному углу 80°.
l = π·r·g/180
l = π*3*80/180 = 4π/3 ≈ 4,189 cм