Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Через вершину N равнобедренного Δ MNL с основанием ML=6см проведена плоскость α параллельно стороне ML. Проекция одной из сторон этого треугольника на плоскость α равна 5 см. Найдите длину проекции на плоскость α медианы ND этого треугольника.
Объяснение:
Проекцией, равной 5 см , не может быть сторона ML=6 , т.к. ML║α .
Пусть LC, АВ -перпендикуляры к плоскости α. Тогда LC=AB. тк ML║α .
Проекцией стороны NL на плоскость α будет отрезок NC=5 см( отрезок между основанием перпендикуляра и основанием наклонной) , а проекцией медианы NA будет отрезок NB.
МА=АL=3 см . АВСL-прямоугольник , поэтому ВС=3 см,
Т.к медиана NB равнобедренного ΔNCO, является высотой , то ΔNBC- прямоугольный , по т. Пифагора NB=√(5²-3²)=4 (см).
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Через вершину N равнобедренного Δ MNL с основанием ML=6см проведена плоскость α параллельно стороне ML. Проекция одной из сторон этого треугольника на плоскость α равна 5 см. Найдите длину проекции на плоскость α медианы ND этого треугольника.
Объяснение:
Проекцией, равной 5 см , не может быть сторона ML=6 , т.к. ML║α .
Пусть LC, АВ -перпендикуляры к плоскости α. Тогда LC=AB. тк ML║α .
Проекцией стороны NL на плоскость α будет отрезок NC=5 см( отрезок между основанием перпендикуляра и основанием наклонной) , а проекцией медианы NA будет отрезок NB.
МА=АL=3 см . АВСL-прямоугольник , поэтому ВС=3 см,
Т.к медиана NB равнобедренного ΔNCO, является высотой , то ΔNBC- прямоугольный , по т. Пифагора NB=√(5²-3²)=4 (см).