Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники
a - длина ребра тетраэдра Н=? пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины высота правильного треугольника вычисляется по формуле:
OA=2√6 прямоугольный ΔМОА: Гипотенуза МА=6√2 см катет АО=2√6 см катет МО=Н, найти по теореме Пифагора: МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
Відповідь:V=15см³
Пояснення:
Объем такого параллелепипеда равен произведению его трех измерений.
Одно из этих измерений равно 5см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*5 =36см. Или
X+Y=4 см. (1) Х=4-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(5*X)+2*(5*Y)+2*X*Y=46 см². Или
5*X+5*Y+X*Y=23 см². Или
5(X+Y)+X*Y=23 см². Подставим значение (1):
5*4+X*Y=23 => X*Y=3. Подставим значение из (2):
Y²-4Y+3=0. Решаем это квадратное уравнение:
Y1=1 см. => X1=3см
Y2=3см. => X2 =1см.
Тогда объем параллелепипеда равен 1*3*5=15см³.
ответ: V=15см³.
a - длина ребра тетраэдра
Н=?
пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра
О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины
высота правильного треугольника вычисляется по формуле:
OA=2√6
прямоугольный ΔМОА:
Гипотенуза МА=6√2 см
катет АО=2√6 см
катет МО=Н, найти по теореме Пифагора:
МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см