Заданный четырёхугольник АРТС - равнобедренная трапеция. В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4. Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х. Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36). Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36). По свойству вписанной окружности суммы оснований и боковых сторон равны. 3х + 3х = 2√(х² - 36) + 8√(х² - 36). 6х = 10√(х² - 36). Возведём обе части в квадрат. 64х² = 100х² - 3600. 64х² = 3600. х = √3600/√64 = 60/8= 15/2. Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
(См. рисунок) Прямые ND и DC пересекаются в точке D: ND ∩ DC = D
⇒ по теореме стереометрии о пересекающихся прямых через них проходит плоскость и притом только одна – плоскость γ ("гамма").
Две точки прямой NC лежат в плоскости "гамма", значит вся прямая NC лежит в этой плоскости: NC ⊂ γ. Так как прямая KN пересекает NC в точке N, принадлежащей прямой NC: N ∈ NC, то KN и NC также лежат в одной плоскости. Итак, точки N, D, C, K образуют плоскость γ.
Поскольку плоскость α параллельна плоскости β: α║β,
то по теореме о пересечении двух параллельных плоскостей третьей: линии пересечения будет параллельны друг другу ⇒ KN ║ DC ⇒ углы
NDC и KND – односторонние; их сумма равна развёрнутому углу:
В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4.
Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х.
Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36).
Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36).
По свойству вписанной окружности суммы оснований и боковых сторон равны.
3х + 3х = 2√(х² - 36) + 8√(х² - 36).
6х = 10√(х² - 36). Возведём обе части в квадрат.
64х² = 100х² - 3600.
64х² = 3600.
х = √3600/√64 = 60/8= 15/2.
Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
(См. рисунок) Прямые ND и DC пересекаются в точке D: ND ∩ DC = D
⇒ по теореме стереометрии о пересекающихся прямых через них проходит плоскость и притом только одна – плоскость γ ("гамма").
Две точки прямой NC лежат в плоскости "гамма", значит вся прямая NC лежит в этой плоскости: NC ⊂ γ. Так как прямая KN пересекает NC в точке N, принадлежащей прямой NC: N ∈ NC, то KN и NC также лежат в одной плоскости. Итак, точки N, D, C, K образуют плоскость γ.
Поскольку плоскость α параллельна плоскости β: α║β,
то по теореме о пересечении двух параллельных плоскостей третьей: линии пересечения будет параллельны друг другу ⇒ KN ║ DC ⇒ углы
NDC и KND – односторонние; их сумма равна развёрнутому углу:
∠NDC + ∠KND = 180° ⇒ ∠KND = 180° - ∠NDC = 180° - 80° = 100°.
ответ: ∠KND = 100°