Написать уравнение плоскости , проходящей через точку н ( -3,0,7 ) и перпендикулярно вектору n( 1 ; -1; 3 ) . найти расстояние от точки м ( 12; -7; -9 ) до этой плоскости . 2. написать уравнение плоскости , проходящей через точку м ( 5; -1; 3 ) перпендикулярно вектору mn если n ( 0; -2 ; 1 ) 3 .
найти косинус угла между плоскостями , составленными в 1 и 2 .
Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см).
Площадь трапеции равна
S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)
2) Диагонали ромба пересекаются под прямым углом тогда другой из углов равен 90-16'5=73'5. То есть углы равны по два 16'5*2=33 гр и по два. 73'5*2=147 гр . 3) Продлим перпендикуляр на на его же длину , то есть получим длину того же перпендикуляра только в два раза больше , так как он равен высоте проекций точки пересечения диагоналей , значит надо от этого перпендикуляра , перпендикулярна ей построить такую же прямую ,получим первую сторону , для остальных трёх надо проделать ту же операцию , получим квадрат.