По теореме о вписанном угле известно, что вписанный угол в 2 раза меньше центрального угла, опирающегося на ту же дугу, что и вписанный угол.Пусть угол АСВ = х град., тогда угол АОВ = 2х град. По условию задачи угол АОВ на 72 град. больше угла АСВ. Имеем уравнение:2х - х = 39х= 39угло АСВ = 39 град.Тогда центральный угол АОВ = 39*2 = 78 град.ответ: 78 градусовACB = yAOB = x(Т.к. центральный в 2 раза больше вписанного ( по теореме о вписанном и центральном угле опирающихся на одну дугу ))x = 2y=> 2y = y+39y= 39 x = 39*2 = 78
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).