В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
elenasypchenkop00npz
elenasypchenkop00npz
17.11.2022 22:25 •  Геометрия

напиши уравнение окружности, которая проходит через точку 3 на оси ox и через точку 10 на оси oy, если известно, что центр находится на оси ox.

Показать ответ
Ответ:
Динара22235
Динара22235
11.10.2020 03:53

Объяснение:

По условию при х=3 у=0 (пересечение с осью Ох), а при у=10 х=0 (пересечение с осью Оу). В общем виде формула окружности следующая: (х - х0)^2 + (у - у0)^2 = R^2 (получена из длины отрезка т.е. радиуса), где х0 и у0 – координаты центра окружности. Мы сможем приравнять уравнения окружности, которые составим по условию, так как они оба будут равны R^2. Итак: 1) (3 - х0)^2 + (0 - у0)^2 = R^2 и 2) (0 - х0)^2 + (10 - у0)^2 = R^2. 1) = 2) <=> 9 + х0^2 - 6х0 + у0^2 = х0^2 + 100 + у0^2 - 20у0 <=> 20у0 - 6х0 = 91 <=> 6х0 + 91 = 20у0. Если центр окружности находится на оси Ох, то у0 = 0 => 6х0 + 91 = 0 <=> х0 = –91/6 = –15 1/6.

Теперь посчитаем радиус в квадрате для полной формулы, подставим например х=3, у=0:

(3 - -15 1/6)^2 + (0-0)^2 = (18 1/6)^2 = 109^2.

Т.о. (х + 91/6)^2 + (у - 0)^2 = 109^2

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота