Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 2 на оси Oy, если известно, что центр находится на оси Oy. x2+(y− )2= 2.
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
1.сумма углов четырехугольника равна 360,а так как один из углов прямой,то сумма остальних будет 360-90=270
составляем уравнение:
3х+8х+4х=270
15х=270
х=18
самый меньший у нас 18×3=54⁰
2.сумма углов равна 180×(n-2)
каждый угол равен
((180×(n-2))/n)=156
чтобы было понятней я напишу решение на бумаге
180n-360=156n
n=15
3.Полупериметр параллелограмма АВ+AD=16, BD=9 периметр треугольника ABD равен 16+9=25 см. ответ: 25 см
4.т.к сумма двух углов равна 100,то сумма других равна 360-100=260
260÷2=130⁰
5.)4×4.5=18(я тут не особо уверен)
6.)17×2=34
34-15=19
ответ:19
7.)ответ: 16.2
х-средняя линия
х+5.6-основание
х=(х+5.4)/2
2х=х+5.4
х=5.4 это средняя линия
2х=10.8 это основание
10.8-5.4=16.2
8.)10×2=20
36-20=16
16÷2=8
ответ:8
9.)большее основание равно:12
9=(х+х-6)/2
18=2х-6
24=2х
х=12
P.S на рисунке это 2 задание,тут решение может быть не понятным