Шкала транспортира располагается на полуокружности. Центр этой полуокружности отмечен на транспортире чёрточкой. Штрихи шкалы транспортира делят полуокружность на 180 долей. Лучи, проведённые из центра полуокружности через эти штрихи, образуют 180 углов, Градусы обозначают знаком °. Каждое деление шкалы транспортира равно 1°. Кроме делений по 1°, на транспортире есть ещё деления по 5° и по 10°. Вершина О угла АОВ на рисунке 174 находится в центре полуокружности; луч ОА проходит через нулевую отметку (начало отсчёта), а луч ОВ проходит через отметку 110. Поэтому угол АОВ равен 110°. Пишут: ∠АОВ = 110°.
Свойства треугольника, изучающиеся в школе, за редким исключением, известны с античности.
Теорема Чевы была доказана в XI веке арабским учёным Юсуфом аль-Мутаманом ибн Худом, однако его доказательство было забыто. Она была доказана вновь итальянским математиком Джованни Чевой в 1678 году.
Дальнейшее изучение треугольника началось в XVII веке: была доказана теорема Дезарга (1636), открыты некоторые свойства точки Торричелли (1659). В XVIII веке была обнаружена прямая Эйлера и окружность шести точек (1765). В 1828 году была доказана теорема Фейербаха. В начале XIX века была открыта точка Жергонна.
Многие факты, связанные с треугольником, были открыты в конце XIX века. К этому времени относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нейберга, Пьера Сонда́.
Теорема Чевы была доказана в XI веке арабским учёным Юсуфом аль-Мутаманом ибн Худом, однако его доказательство было забыто. Она была доказана вновь итальянским математиком Джованни Чевой в 1678 году.
Дальнейшее изучение треугольника началось в XVII веке: была доказана теорема Дезарга (1636), открыты некоторые свойства точки Торричелли (1659). В XVIII веке была обнаружена прямая Эйлера и окружность шести точек (1765). В 1828 году была доказана теорема Фейербаха. В начале XIX века была открыта точка Жергонна.
Многие факты, связанные с треугольником, были открыты в конце XIX века. К этому времени относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нейберга, Пьера Сонда́.