1. Возможно, этот угол опирается на диаметр, потому как в противном случае есть контрпример. Продлим одну из сторон угла назад до пересечения с окружностью. Данный угол внешний для треугольника, у которого один из углов 90 градусов, а второй не равняется нулю. Значит, угол больше 90 градусов, но меньше 180 градусов. Значит, данный угол - тупой по определению.
2. В треугольнике АДВ медиана ДF равна половине гипотенузы АВ. Аналогично ДЕ равно половине АС. А ЕF - средняя линия треугольника АВС, параллельная ВС, а значит и равная её половине. Отсюда периметр искомого треугольника равен полупериметру периметра АВС на основании того, что стороны треугольников можно разделить на пары, в каждой из которых сторона треугольника АВС будет вдвое больше стороны треугольника DEF.
ответ: 64/2=32 см.
3. Известно, что биссектрисы соседних углов параллелограмма пересекаются под прямым углом.
По теореме Пифагора ВС=10 см.
Угол АВМ=СВМ=АМВ, т.к. углы накрест лежащие при параллельных прямых. Значит, АМ=АВ=СД.
Аналогично СД=МД. Значит, АВ=ВС/2, АВСД=2*ВС+2*ВС/2=3*ВС=30 см.
Центр окружности О, ОМ - искомое расстояние. Т.к. угол АСВ опирается на диаметр, то он равен 90 градусов. Расстояние до прямой есть перпендикуляр до этой прямой. Значит, ОМ параллельно АС, а АО=ОВ, а отсюда следует, что ОМ - средняя линия треугольника АВС. Значит, ОМ= АС/2=4/3.
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
1. Возможно, этот угол опирается на диаметр, потому как в противном случае есть контрпример. Продлим одну из сторон угла назад до пересечения с окружностью. Данный угол внешний для треугольника, у которого один из углов 90 градусов, а второй не равняется нулю. Значит, угол больше 90 градусов, но меньше 180 градусов. Значит, данный угол - тупой по определению.
2. В треугольнике АДВ медиана ДF равна половине гипотенузы АВ. Аналогично ДЕ равно половине АС. А ЕF - средняя линия треугольника АВС, параллельная ВС, а значит и равная её половине. Отсюда периметр искомого треугольника равен полупериметру периметра АВС на основании того, что стороны треугольников можно разделить на пары, в каждой из которых сторона треугольника АВС будет вдвое больше стороны треугольника DEF.
ответ: 64/2=32 см.
3. Известно, что биссектрисы соседних углов параллелограмма пересекаются под прямым углом.
По теореме Пифагора ВС=10 см.
Угол АВМ=СВМ=АМВ, т.к. углы накрест лежащие при параллельных прямых. Значит, АМ=АВ=СД.
Аналогично СД=МД. Значит, АВ=ВС/2, АВСД=2*ВС+2*ВС/2=3*ВС=30 см.
ответ: 30 см.
4. Диаметр АВ равен 2кор(2), хорда ВС - 2кор(2)/3. Проведём АС. По теореме Пифагора:
АС^2=8-8/9;
AC^2=64/9;
AC=8/3.
Центр окружности О, ОМ - искомое расстояние. Т.к. угол АСВ опирается на диаметр, то он равен 90 градусов. Расстояние до прямой есть перпендикуляр до этой прямой. Значит, ОМ параллельно АС, а АО=ОВ, а отсюда следует, что ОМ - средняя линия треугольника АВС. Значит, ОМ= АС/2=4/3.
ответ: 4/3.