Напишите решение Построить проекции прямой AB с координатами заданных точек A և B, определить реальную величину отрезка AB I, составить углы с плоскостями проекций A- 65 55 30 B-35 25 50
Продлим боковые стороны трапеции до пересечения в точке М. Сумма углов при основании треугольника АМВ равна 90°, следовательно, угол АМD равен 180°-90°=90° Рассмотрим треугольники АМD и BМC. Так как ВС|| АD, соответственные углы при их пересечении секущими АМ и DМ равны. Рассматриваемые треугольники подобны по трем углам. Отсюда АМ:BМ=AD:BC (10+BМ):BМ=18:6 6*(10+ВМ)=18 ВМ 60+6 ВМ=18 ВМ 12 ВМ=60 ВМ=5 Из С проведем СО параллельно АВ. В четырехугольнике АВСО противоположные стороны параллельны, ⇒АВСО= параллелограмм, и АО=ВС=6 см, СО=АВ=10 см Из вершины В проведем прямую ВК параллельно СD до пересечения с АD. ВМ=ТС=5 ( т.к. ВМСТ- прямоугольник из параллельности его сторон и равенства углов) ⇒ Т - середина ОС, который равен АВ, угол ВСТ=углу ТОК как накрестлежащие. Вертикальные углы при Т - равны. Следовательно, ⊿ ВТС=⊿ ОТК по двум углам, прилежащим к равной стороне. ⇒ ОК=ВС=6 АО=ОК=6 см Угол АВК вписанный и прямой, опирается на АК ⇒ диаметр, О - его середина. ⇒ R= АО=6 см --------- Но так и напрашивается другое решение, при котором величина АВ как будто бы является лишней. Если мы проведем ВК параллельно МD. то угол АВК - прямой, опирается на АК , и потому АК - диаметр. Поскольку DК=ВС=6, то АК=18-6=12, и тогда R=12:2=6 см)
ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Сумма углов при основании треугольника АМВ равна 90°, следовательно, угол АМD равен 180°-90°=90°
Рассмотрим треугольники АМD и BМC.
Так как ВС|| АD, соответственные углы при их пересечении секущими АМ и DМ равны. Рассматриваемые треугольники подобны по трем углам. Отсюда АМ:BМ=AD:BC
(10+BМ):BМ=18:6
6*(10+ВМ)=18 ВМ
60+6 ВМ=18 ВМ
12 ВМ=60
ВМ=5
Из С проведем СО параллельно АВ.
В четырехугольнике АВСО противоположные стороны параллельны, ⇒АВСО= параллелограмм, и АО=ВС=6 см, СО=АВ=10 см
Из вершины В проведем прямую ВК параллельно СD до пересечения с АD. ВМ=ТС=5 ( т.к. ВМСТ- прямоугольник из параллельности его сторон и равенства углов) ⇒
Т - середина ОС, который равен АВ,
угол ВСТ=углу ТОК как накрестлежащие.
Вертикальные углы при Т - равны.
Следовательно, ⊿ ВТС=⊿ ОТК по двум углам, прилежащим к равной стороне. ⇒
ОК=ВС=6
АО=ОК=6 см
Угол АВК вписанный и прямой, опирается на АК ⇒ диаметр, О - его середина. ⇒
R= АО=6 см
---------
Но так и напрашивается другое решение, при котором величина АВ как будто бы является лишней.
Если мы проведем ВК параллельно МD. то угол АВК - прямой, опирается на АК , и потому АК - диаметр. Поскольку DК=ВС=6, то АК=18-6=12, и тогда R=12:2=6 см)