Параллельные плоскости α и β пересекают сторону АВ угла ВАС соответственно в точках Р и Н, а сторону АС этого угла - соотвптственно в точках Q и К Найдите:
а) АН и АК если РН= 2РА, РН = 12 см, AQ = 5 см
Задача на подобие треугольников.
Рассмотрим рисунок. Стороны угла АВС и параллельные плоскости ( на рисунке они изображены прямыми α и β ) образуют пересечением два подобных треугольника,
так как их углы при параллельных основаниях равны по свойству параллельных прямых и секущей. В треугольнике АНК дано, что отрезок РН = 2 РА. РН=12, ⇒ РА=12:2=6 см АН =12+6=18 см Сторона АН ᐃ АВС пропорциональна стороне АР ᐃ APQ k=18:6=3 Так как рассматриваемые треугольники подобны, то АК:АQ=3 АQ=5, ⇒ АК=5·3=15см
б) НК и АН, если PQ = 18 см, АР = 24 см, АН = 3/2 РН АН = 3/2 РН ⇒ РН=2/3 АН АР=1/3 АН =24 см АН=24·3=72 см Так как k=3, PQ=1/3 НК ⇒ НК=18·3=54 см
Рассмотрим Δ APK и ΔMPN, они равны, потому что AP=PN (по условию), KP=PM (по условию), ∠APK = ∠MPN (вертикальные углы), что и требовалось доказать. Так как треугольники равны, а значит они имеют равные стороны и углы, отсюда MN=AK=24
ответ: доказано; 24.
№3
Дано:
BA=DC
AD=BC
∠CAD=37
Доказать: ΔABC = ΔADC
Найти: ∠BCA
ΔABC=ΔADC, потому что AB=DC (по условию), AD=BC (по условию), AC -общая сторона, это третий признак равенства треугольников, что и требовалось доказать. В равных треугольниках против равных углов лежат равные стороны, а значит ∠BCA = ∠CAD = 37
Параллельные плоскости α и β пересекают сторону АВ угла ВАС соответственно в точках Р и Н, а сторону АС этого угла - соотвптственно в точках Q и К
Найдите:
а) АН и АК если РН= 2РА, РН = 12 см, AQ = 5 см
Задача на подобие треугольников.
Рассмотрим рисунок.
Стороны угла АВС и параллельные плоскости ( на рисунке они изображены прямыми α и β ) образуют пересечением два подобных треугольника,
так как их углы при параллельных основаниях равны по свойству параллельных прямых и секущей.
В треугольнике АНК дано, что отрезок РН = 2 РА.
РН=12, ⇒
РА=12:2=6 см
АН =12+6=18 см
Сторона АН ᐃ АВС пропорциональна стороне АР ᐃ APQ
k=18:6=3
Так как рассматриваемые треугольники подобны, то
АК:АQ=3
АQ=5, ⇒
АК=5·3=15см
б) НК и АН, если PQ = 18 см, АР = 24 см, АН = 3/2 РН
АН = 3/2 РН ⇒
РН=2/3 АН
АР=1/3 АН =24 см
АН=24·3=72 см
Так как k=3,
PQ=1/3 НК ⇒
НК=18·3=54 см
Дано:
AP=PN
KP=PM
AK = 24
Доказать: ΔAPK=ΔMPN
Найти: MN
Рассмотрим Δ APK и ΔMPN, они равны, потому что AP=PN (по условию), KP=PM (по условию), ∠APK = ∠MPN (вертикальные углы), что и требовалось доказать. Так как треугольники равны, а значит они имеют равные стороны и углы, отсюда MN=AK=24
ответ: доказано; 24.
№3
Дано:
BA=DC
AD=BC
∠CAD=37
Доказать: ΔABC = ΔADC
Найти: ∠BCA
ΔABC=ΔADC, потому что AB=DC (по условию), AD=BC (по условию), AC -общая сторона, это третий признак равенства треугольников, что и требовалось доказать. В равных треугольниках против равных углов лежат равные стороны, а значит ∠BCA = ∠CAD = 37