усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
S=√p(p-a)(p-b)(p-c) , формула Герона , p _полупериметр
p =(a+b+c)/2 =(3+8+7)/2 =9 (см).
S =√9*6*1*2 =6√3 (см²).
2.
∠A +∠C =140°.
---
∠B =∠D - ?
* * * трапеция равнобедренная ⇒ ∠A=∠C и ∠D = ∠B * * *
∠A=∠C =140°/2 =70°.
∠A+∠B =180° ( как сумма односторонних углов) ;
∠B =180° - ∠A=180 °- 70°=110°.
или
(∠A+ ∠C)+(∠B + ∠D) =360 ;
(∠A+ ∠C)+2∠B =360 ;
∠B =(360°-(∠A+ ∠C))/2 =(360°-140°) /2 =110°.
4.
S = AB*CH/2 = 3*3/2 =4,5 (см²).
5.
R =c/2 где с гипотенуза ;
По теореме Пифагора : c=√(6²+8²) =√(36+64) =√100 =10 (см) .
R =c/2 =10 см /2 =5 см.