1. в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур). геометрия - это отдел математики, в котором изучаются пространственные формы и законы их измерения. 2. прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца. Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна. Две прямые могут пересекаться только в одной точке. Через одну точку можно провести бесконечное множество прямых.
если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 .
lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
2. прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца. Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна. Две прямые могут пересекаться только в одной точке. Через одну точку можно провести бесконечное множество прямых.
Так наверное
Объяснение:
если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 .
lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...