Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Дано: ΔАВС, ΔА₁В₁С₁,
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
На стороне АС треугольника АВС отложим СА₂ = С₁А₁ и проведем А₂В₂║АВ.
Так как прямая, параллельная стороне треугольника, отсекает треугольник, подобный данному, то
ΔАВС подобен ΔА₂В₂С , значит их стороны пропорциональны:
, а так как А₂С = А₁С₁, то получаем
,
По условию:
.
Из этих двух равенств следует, что
А₂В₂ = А₁В₁ и В₂С = В₁С₁.
Тогда ΔА₁В₁С₁ = ΔА₂В₂С по трем сторонам.
Значит,
ΔАВС подобен ΔА₁В₁С₁.
Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Дано: ΔАВС, ΔА₁В₁С₁,
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
На стороне АС треугольника АВС отложим СА₂ = С₁А₁ и проведем А₂В₂║АВ.
Так как прямая, параллельная стороне треугольника, отсекает треугольник, подобный данному, то
ΔАВС подобен ΔА₂В₂С , значит их стороны пропорциональны:
, а так как А₂С = А₁С₁, то получаем
,
По условию:
.
Из этих двух равенств следует, что
А₂В₂ = А₁В₁ и В₂С = В₁С₁.
Тогда ΔА₁В₁С₁ = ΔА₂В₂С по трем сторонам.
Значит,
ΔАВС подобен ΔА₁В₁С₁.
Составим систему из двух уравнений.
{x² + y² = 12², {x² + y² = 144,
{(1/2)xy = 36. {xy = 72. Отсюда у = 72/х подставим в первое уравнение.
х² + (72/х)² = 144.
Получаем биквадратное уравнение х^4 - 144 x² + 5184 = 0.
Примем х² = t.
t² - 144t + 5184 = 0.
Квадратное уравнение, решаем относительно t: Ищем дискриминант:
D=(-144)^2-4*1*5184=20736-4*5184=20736-20736=0; Дискриминант равен 0, уравнение имеет 1 корень:
t=-(-144/(2*1))=-(-72)=72.
Обратная замена: х = √72 = 6√2.
у = 72/6√2 = 6√2.
Имеем равнобедренный прямоугольный треугольник с острыми углами по 45 градусов.