напишите уравнения прямых параллельных Ox и Oy и проходящих через точку C (-71;95) 2) составьте уравнение прямой проходящей через точку M (1;-4) и точку H (-3;2)
АВСДЕФК - пирамида с вершиной К. КО=4см - высота. КМ - апофема. М∈АВ. Боковая поверхность правильной шестиугольной пирамиды состоит из шести равнобедренных тр-ков, равных ΔАВС, следовательно площадь одного тр-ка: S3=Sбок/6=192/6=32 см². Апофема в тр-ке АВС представляет собой высоту, опущенную на основание. КМ=АВ. S3=КМ·АВ/2=АВ²/2, АВ=√(2·S3)=8 см. Площадь правильного шестиугольника, находящегося в основании, состоит из шести правильных тр-ков. Площадь одного рассчитывается по формуле S=a²√3/4 Sш=6·S=3a²√3/2=96√3 см² V=Sш·КО/3=128√3 см³.
М∈АВ.
Боковая поверхность правильной шестиугольной пирамиды состоит из шести равнобедренных тр-ков, равных ΔАВС, следовательно площадь одного тр-ка: S3=Sбок/6=192/6=32 см².
Апофема в тр-ке АВС представляет собой высоту, опущенную на основание. КМ=АВ.
S3=КМ·АВ/2=АВ²/2,
АВ=√(2·S3)=8 см.
Площадь правильного шестиугольника, находящегося в основании, состоит из шести правильных тр-ков. Площадь одного рассчитывается по формуле S=a²√3/4
Sш=6·S=3a²√3/2=96√3 см²
V=Sш·КО/3=128√3 см³.
Дано :
∠3 = 70°.
∠4 = 100°.
Найти :
При каком значении угла ∠1 угол ∠2 = 80°.
Давайте допустим, что уже ∠2 = 80°.
Тогда рассмотрим внутренние односторонние ∠4 и ∠2 при пересечении двух прямых a и b секущей d.
Если при пересечении двух прямых секущей сумма двух односторонних углов равна 180°, то эти прямые параллельны.Так как -
∠4 + ∠2 = 100° + 80° = 180°
То -
a ║ b.
Рассмотрим эти же прямые, но только тогда, когда они пересечены секущей с.
∠1 и ∠3 - соответственные.
При пересечении двух параллельных прямых секущей соответственные углы равны.Следовательно -
∠1 = ∠3 = 70°.
Это значит, что если ∠1 = 70°, то ∠2 = 80°.
70°.