1. По одному из теорем сторон ∆, мы узнаем, что AD=AB-BD=19-9,5=9,5см
DC=BC-BD=19-9,5=9,5см
2. По правилу: катет лежащий напротив угла в 30° равен половине гипотенузы
Находим, что если АD=1/2AB, то угол ABD=30°. То же самое и с ∆BCD.
3. Из правила: сумма острых углов прямоугольного треугольника равна 90°
Находим, что угол ВАС= углу ВСА= 60°
4. Теперь найдем общий угол АВС= АВD+CBD=30+30=60°
5. Это уже дополнительно, но из всего этого можно добавить, что ∆АВС не только равнобедренный, но и равносторонний
6. Также хочу уточнить, что высота ВD разделила ∆АВС на прямоугольные треугольники ∆ ABD и ∆BCD, в которых угол D равен 90°
дано:
ABCD - параллелограмм, РСАD - трапеция HR - средняя линия трапеции
Р ∧ ВС ∧ - типа пересекает
АР- биссектриса <А < типа угол
АD - 10 см
HR - 6 см
Найти: Равсd.
как мы знаем HR= 1/2(РС+АD)
подставляем 6=1/2 (РС + 10)
12=PC+10
PC= 12-10
PC= 2.
так PC мы узнали.
далее находим BP.
BP=AD-PC
BP=10-2
BP=8
так как <BAP=<PAD, то <BAP=<BPA,(признак параллелограмма, BC параллельно AD, как накрест лежащие.)
т.е. ΔABP равнобедренный, а так как BP=AB(свойство равнобедренного треугольника) то, AB=8.
Рabcd=AB+BC+AD+CD
Pabcd=8+10+10+8=36
1. По одному из теорем сторон ∆, мы узнаем, что AD=AB-BD=19-9,5=9,5см
DC=BC-BD=19-9,5=9,5см
2. По правилу: катет лежащий напротив угла в 30° равен половине гипотенузы
Находим, что если АD=1/2AB, то угол ABD=30°. То же самое и с ∆BCD.
3. Из правила: сумма острых углов прямоугольного треугольника равна 90°
Находим, что угол ВАС= углу ВСА= 60°
4. Теперь найдем общий угол АВС= АВD+CBD=30+30=60°
5. Это уже дополнительно, но из всего этого можно добавить, что ∆АВС не только равнобедренный, но и равносторонний
6. Также хочу уточнить, что высота ВD разделила ∆АВС на прямоугольные треугольники ∆ ABD и ∆BCD, в которых угол D равен 90°
ОТМЕТЬ, КАК ЛУЧШИЙ ОТВЕТдано:
ABCD - параллелограмм, РСАD - трапеция HR - средняя линия трапеции
Р ∧ ВС ∧ - типа пересекает
АР- биссектриса <А < типа угол
АD - 10 см
HR - 6 см
Найти: Равсd.
как мы знаем HR= 1/2(РС+АD)
подставляем 6=1/2 (РС + 10)
12=PC+10
PC= 12-10
PC= 2.
так PC мы узнали.
далее находим BP.
BP=AD-PC
BP=10-2
BP=8
так как <BAP=<PAD, то <BAP=<BPA,(признак параллелограмма, BC параллельно AD, как накрест лежащие.)
т.е. ΔABP равнобедренный, а так как BP=AB(свойство равнобедренного треугольника) то, AB=8.
Рabcd=AB+BC+AD+CD
Pabcd=8+10+10+8=36