Нарисуй равнобедренный прямоугольный треугольник ABC и выполни поворот треугольника вокруг вершины прямого угла A на угол −90°.
Определи периметр фигуры, которая образовалась из обоих треугольников, если длина катета данного треугольника равна 13 см.
(Промежуточные вычисления и ответ округли до сотых!)
Обзовем два наших острых угла а и в.
Так как сумма углов треугольника равна 180, а третий угол нам известен (это прямой угол в 90 градусов), то запишем
это значит, что сумма двух острых углов равна 90 градусов. Это справедливо для любого прямоугольного треугольника.
Теперь нам известно, что один угол больше другого на 30 градусов. Пусть . Тогда
Это и есть наш больший острый угол, ведь , то есть угол бета больше угла альфа.
ответ: 60 градусов
Из вершины С тупого угла трапеции опустим высоту СН на АД.
АВСН - прямоугольник ( т.к. трапеция прямоугольная).
ВС=АН,
АВ=СН.
Площадь трапеции равна произведению её высоты на полусумму оснований.
S АВСД=СН*(АД+ВС):2
Пусть коэффициент отношения боковых сторон равен х.
Тогда
АВ=4х,
СД=5х.
СН=АВ=4х.
Из прямоугольного треугольника СНД
НД²=СД²-СН²
18=√(25х²-16х²)=3х
х=НД:3=18:3=6 см
АВ=4х=4*6=24 см
АН=√(АС²-СН²)=10 см
ВС=АН=10 см
АД=10+18=28 см
S АВСД=СН*(АД+ВС):2
S АВСД=24*(28+10):2=456 см²