Нарисуй равнобедренный прямоугольный треугольник ABC и выполни поворот треугольника вокруг вершины прямого угла A на угол 90°.
Определи периметр фигуры, которая образовалась из обоих треугольников, если длина катета данного треугольника равна 17 см.
(Промежуточные вычисления и ответ округли до сотых!)
Найдите площадь полученного треугольника
.
Обозначим вершины трапеции АВСД.
Углы равнобедренной трапеции, прилежащие к основанию, равны.
Следовательно, угол ВАД=СДА=60°
Продолжим боковые стороны до их пересечения и получим равносторонний треугольник.
.Центр вписанной в треугольник окружности лежит на пересечении его высот (биссектрис)
Прямая, проходящая через вершину острого угла и центр вписанной окружности, делит угол при основании трапеции пополам, т.к. является биссектрисой угла.
Следовательно, треугольник АНД - половина правильного треугольника, и его площадь равна половине площади правильного треугольника со стороной 24.
Площадь правильного треугольника находят по формуле
S=(a²√3):4
S ⊿ АДН=¹/₂(24²√3):4= 576(√3):8=72√3
-----------------
Есть и другие решения, ответ будет тот же, но это решение - самое, на мой взгляд, короткое.
ИЛИ ЖЕ13. С(x;y;z)
x= (-3+1)/2= -1
y=(1+1)/2=1
z=(2+2)/2=2А