Нарисуй равнобедренный прямоугольный треугольник ABC и выполни поворот треугольника вокруг вершины прямого угла A на угол 90°.
Определи периметр фигуры, которая образовалась из обоих треугольников, если длина катета данного треугольника равна 3 см.
(Промежуточные вычисления и ответ округли до сотых!)
A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004.
ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6.
АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004.
Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна:
ha = 2√(p(p-a)(p-b)(p-c)) / a.
a b c p 2p S
8.5440037 6 8.5440037 11.544004 23.08800749 24
ha hb hc
5.61798 8 5.61798
∠XIaY=114°
Объяснение:
Дано: ΔАВС.
BIa - биссектриса ∠РВС; СIa - биссектриса ∠ВСТ;
ХВ=АВ; АС=СY;
∠ВАС=66°.
Найти: ∠XIaY
1. ∠1+∠2=180°-66°=114° (сумма углов Δ)
∠1+2α=180° (развернутый)
∠2+2β=180° (развернутый)
∠1+∠2+2α+2β=360°
2(α+β)=360°-114°=246° ⇒ α+β=123°
2. Рассмотрим ΔBCIa.
∠BIaC=180°-(α+β)=180°-123°=57° =∠6+∠3 (сумма углов Δ)
3. Рассмотрим ΔХВА - равнобедренный.
∠XBA=∠KBA=α ⇒ ВК - биссектриса, медиана, высота (свойство р/б Δ)
4. Рассмотрим ΔACY - равнобедренный.
∠АСМ=∠MCY=β ⇒ CM - биссектриса, медиана, высота (свойство р/б Δ)
5. Рассмотрим ΔXIaA.
IaK - высота, медиана (п.3) ⇒ ΔXIaA - равнобедренный
⇒ IaK - биссектриса ⇒ ∠5=∠6.
6. Рассмотрим ΔAIaY.
IaM - высота, медиана ⇒ ΔAIaY - равнобедренный
⇒ IaM - биссектриса ⇒ ∠3=∠4
7. ∠XIaY=∠5+∠6+∠3+∠4=2*(∠6+∠3)=2*57°=114°