проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать
Таблица точек для графика приложена Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞) Это пока примерное решение, найдём точное производная функции f(x) = 2x³ - 3x² - 36x + 11 f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6) Найдём нули производной для определения точек экстремумов функции f'(x) = 0 6(x² - x - 6) = 0 x² - x - 6 = 0 Дискриминант D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5² Корни x₁ = (1 - 5)/2 = -2 x₂ = (1 + 5)/2 = 3 Т.е. точки, определённые по графику - точны, и ответ функция возрастает при x ∈ (-∞;-2] и x ∈ [3;+∞)
проведем через точку М, пряммую перпендикулярную АD, так как AD||BC, то она будет перпендикулярна и прямой ВС, пусть пряммую AD она пересекает в точке L, а пряммую BC в точке K.
Тогда LM - высота параллелограмма ABCD, LM - высота треугольника ADM, KM - высота треугольника BCM.
Площадь парарлелограмма равна произведению его стороны на высоту, проведенную к этой стороне
Площадь треугольника равна половине произведения стороны на высоту провдеенной к этой стороне
Поэтому
S(AMD)+S(BMC)=1/2*AD*LM+1/2*BC*KM=так противоположные стороны парарлелограмма равны=
=1/2*AD*LM+1/2*AD*KM=1/2*AD*(LM+KM)=1/2*AD*LK=1/2*S(ABCD), что и требовалось доказать
Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞)
Это пока примерное решение, найдём точное
производная функции
f(x) = 2x³ - 3x² - 36x + 11
f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6)
Найдём нули производной для определения точек экстремумов функции
f'(x) = 0
6(x² - x - 6) = 0
x² - x - 6 = 0
Дискриминант
D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5²
Корни
x₁ = (1 - 5)/2 = -2
x₂ = (1 + 5)/2 = 3
Т.е. точки, определённые по графику - точны, и ответ
функция возрастает при
x ∈ (-∞;-2] и x ∈ [3;+∞)