нарисуйте чертеж по этим данным: В треуго ВСД так как он равносторонний, то 45:3=15см каждая сторона, т.е. ВС=15см, а в треугольнике АВС он равнобедренный, ВС=15см уже нашли, значит 40-15=25см (это сумма двух строн), значит 25:2=12,5 это строна АВ=АС=12,5см В итоге: АВ=12,5см, ВС=15см
Проводится прямая, параллельная диагонали длины 3 из вершины верхнего (малого) основания, куда приходит диагональ длины 5. Нижнее (большое) основание продолжается до пересечения с этой прямой. Получился треугольник, у которого боковые стороны 3 и 5.
Площадь этого треугольника равна площади трапеции, поскольку у них общая высота и одинаковая средняя линяя.
Легко показать простым вычислением положения концов, что медиана этого треугольника параллельна отрезку, соединяющему середины оснований, а поэтому она ему равна, то есть её длина 2.
Теперь продолжим медиану на её собственную длину 2 за основание (НЕ ЗА ВЕРШИНУ:))) и соединим с вершинами основания ТРЕУГОЛЬНИКА. Получился параллелограмм (поскольку в нем диагонали делятся пополам, этого достаточно). Ясно что его стороны 3 и 5, а одна из диагоналей 4. Рассмотрим, так сказать, "другую половину" этого параллелограма.
Легко видеть что это - прямоугольный треугольник со сторонами 3,4,5.
Его площадь 3*4/2 = 6 равна площади трапеции.
Все пояснения на рисунке
8√3 см²
Объяснение:
От концов меньшего основания опустим перпендикуляры на нижнее основание. Образуются два равных прямоугольных треугольника с острыми углами 60° и 30°.Нижнее основание этитми перпендикулярами поделит на равные отрезки 6/3=2 см Катет в прямоугольном треугольнике будет равен 2 см, он лежит против угла в 30°. Значит гипотенуза будет в 2 раза больше. Гипотенузой будет боковая сторона трапеции и равна она будет 4 см. Высота трапеции вычисляется по теореме Пифагора h²=4²-2²=16-4=12; h=√12=2√3.
Можно вычислить теперь площадь трапеции
S=(2+6)/2·2√3=8√3