Там где прямой угол поставь точку С. Тогда СА=12(нужно поставить точку А), СВ=5( поставить точку В)
Объяснение:
т.К. УГОЛ ПРЯМОЙ ,то он должен опираться на дугу 180.(Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. )Поэтому АВ-диаметр. На диаметре лежит центр окружности точка О.
Рассмотрим треугольник EFA У него даны две стороны Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник Следовательно третья сторона равна 8. Сторона CA =CF+FA Следовательно CA=12+8=20 Рассмотрим треугольники BCA и EFA Угол С и угол F прямые и они равны Угол А общие Следовательно эти треугольники подобны по двум углам y мы уже нашли ( он равен 8) Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4) Находим x -? Этой стороне подобна сторона EF
Там где прямой угол поставь точку С. Тогда СА=12(нужно поставить точку А), СВ=5( поставить точку В)
Объяснение:
т.К. УГОЛ ПРЯМОЙ ,то он должен опираться на дугу 180.(Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. )Поэтому АВ-диаметр. На диаметре лежит центр окружности точка О.
Рассмотрим ΔАВС, по т.Пифагора АВ²=СА²+СВ ² ,АВ²=144+25 , АВ=√169, АВ=13.Значит диаметр АВ=13.
Радиус в 2 раза меньше: ОА=ОВ=6,5.
Длина окружности — это произведение числа π и диаметра окружности : π *d=3,14*13=40,82
У него даны две стороны
Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник
Следовательно третья сторона равна 8.
Сторона CA =CF+FA
Следовательно CA=12+8=20
Рассмотрим треугольники BCA и EFA
Угол С и угол F прямые и они равны
Угол А общие
Следовательно эти треугольники подобны по двум углам
y мы уже нашли ( он равен 8)
Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4)
Находим x -?
Этой стороне подобна сторона EF