Нарисуйте отрезок ав и через точку в проведите несколько прямых. через точку в проведите отрезки. опустите из точки а перпендикуляры на эти прямые и измерьте расстояние от их оснований до середины отрезка ав. что получилось?
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Т.к. дан косинус, то нужно построить прямоугольный треугольник))) 1) строим две пересекающиеся перпендикулярные прямые)) обозначаем точку пересечения С ---это вершина прямого угла))) это будут катеты в будущем прямоугольном треугольнике... осталось построить гипотенузу... сos(x) = 0.75 = 3/4 по определению: косинус ---это отношение противолежащего катета к гипотенузе... т.е. противолежащий к нужному углу катет будет равен 3 см (или 6 м или 9 км...), а гипотенуза соответственно 4 см (или 8 м или 12 км...))) 2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А. 3) из точки А раствором циркуля в 4 см строим окружность... она пересечется с другой перпендикулярной прямой ---обозначаем точку В. АВ--гипотенуза 4 см СА--катет 3 см искомый угол ВАС его косинус = АС / АВ = 3/4 = 0.75
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
1) строим две пересекающиеся перпендикулярные прямые))
обозначаем точку пересечения С ---это вершина прямого угла)))
это будут катеты в будущем прямоугольном треугольнике...
осталось построить гипотенузу...
сos(x) = 0.75 = 3/4
по определению: косинус ---это отношение противолежащего катета к гипотенузе...
т.е. противолежащий к нужному углу катет будет равен
3 см (или 6 м или 9 км...), а гипотенуза соответственно
4 см (или 8 м или 12 км...)))
2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А.
3) из точки А раствором циркуля в 4 см строим окружность...
она пересечется с другой перпендикулярной прямой ---обозначаем точку В.
АВ--гипотенуза 4 см
СА--катет 3 см
искомый угол ВАС
его косинус = АС / АВ = 3/4 = 0.75