1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
Требуется найти КМ 1. Зная, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, находим длину ВЕ: ВЕ = ВО * 3 / 2 = 36 см, и ОЕ = 36 - 24 = 12 см 2. Рассмотрим треугольник АОЕ. Он прямоугольный, т.к. медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой. По теореме Пифагора найдем неизвестный катет АЕ, зная ОЕ и АО: АЕ = √(9√2)² - 12² = √18 = 3√2 3. Получившиеся прямоугольные треугольники АЕВ и КОВ - подобные по первому признаку подобия (угол КОВ = АЕВ = 90°, угол АВЕ - общий). Значит: = , КО = ;КО = = 2√2 Поскольку ВЕ - медиана, то КМ = КО*2; КМ = 2*2√2 = 4√2 см
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
1. Зная, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины, находим длину ВЕ:
ВЕ = ВО * 3 / 2 = 36 см, и ОЕ = 36 - 24 = 12 см
2. Рассмотрим треугольник АОЕ. Он прямоугольный, т.к. медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой. По теореме Пифагора найдем неизвестный катет АЕ, зная ОЕ и АО:
АЕ = √(9√2)² - 12² = √18 = 3√2
3. Получившиеся прямоугольные треугольники АЕВ и КОВ - подобные по первому признаку подобия (угол КОВ = АЕВ = 90°, угол АВЕ - общий). Значит:
= , КО = ;КО = = 2√2
Поскольку ВЕ - медиана, то КМ = КО*2; КМ = 2*2√2 = 4√2 см