Через вершину A ромба ABCD проведена плоскость, параллельная диагонали BD . Найти углы наклона сторон AB и AD к этой плоскости, если диагональ BD = 16 см и удалена от данной плоскости на 5 см, а площадь ромба равна 96 см².
- - - - - - - - - - - - - - - - -
Любой ученик должен знать
Ромб - это параллелограмм у которого все стороны равны.
Свойства ромба: Диагонали ромба делят его углы пополам. Сумма углов прилежащих к одной стороне равна 180°. Диагонали ромба пересекаются под прямым углом (90°). Диагонали ромба в точке пересечения делятся пополам. Диагонали ромба являются биссектрисами его углов.
- - - - - - - -
BB₁⊥ α ; DD₁ ⊥ α BB₁=DD₁ =5 см
S(ABCD) =AC*BD/2⇒AC =2*S(ABCD) /BD =2*96 см²/16 см=2*6 см =12 см
Из ΔAOB : AB =√(AO²+BO²) =√( (AC/2)²+(BD/2)²) =√(6²+8²) =10 (см)
Прямоугольные тр. ΔDD₁A = ΔBB₁A по катету и гипотенузе
Из ΔBB₁A : катет BB₁ =5 =10/2 = AB/2 половине гипотенузы
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
Через вершину A ромба ABCD проведена плоскость, параллельная диагонали BD . Найти углы наклона сторон AB и AD к этой плоскости, если диагональ BD = 16 см и удалена от данной плоскости на 5 см, а площадь ромба равна 96 см².
- - - - - - - - - - - - - - - - -
Любой ученик должен знать
Ромб - это параллелограмм у которого все стороны равны.
Свойства ромба: Диагонали ромба делят его углы пополам. Сумма углов прилежащих к одной стороне равна 180°. Диагонали ромба пересекаются под прямым углом (90°). Диагонали ромба в точке пересечения делятся пополам. Диагонали ромба являются биссектрисами его углов.
- - - - - - - -
BB₁⊥ α ; DD₁ ⊥ α BB₁=DD₁ =5 см
S(ABCD) =AC*BD/2⇒AC =2*S(ABCD) /BD =2*96 см²/16 см=2*6 см =12 см
Из ΔAOB : AB =√(AO²+BO²) =√( (AC/2)²+(BD/2)²) =√(6²+8²) =10 (см)
Прямоугольные тр. ΔDD₁A = ΔBB₁A по катету и гипотенузе
Из ΔBB₁A : катет BB₁ =5 =10/2 = AB/2 половине гипотенузы
⇒ ∠BAB₁ = 30°
решение с рисунком во вложении