№1 Сумма углов треугольника равна 180 градусов.сумма двух данных углов равна 107+23=130 градусов.следовательно третий угол равен 180-130=70 градусов. №2 Обозначим боковую сторону через Х тогда основание будет Х+12. составляем уравнение Х+Х+(Х+12)=45, 3Х=33,Х=11 Боковая сторона равна 11см,основание равно 23см №3 Углы ANDиCND вертикальные,а значит равны по 104 градуса. Угол ANC смежный с углом AND.Сумма смежных углов равна 180 градусов,тогда угол ANC=180-104=76 №4 Т.к. боковая сторона в 2 раза больше высоты,тоугол,лежащий напротив высоты равен 30 градусов,а это угол при основании равнобедренного треугольника.тогда угол при вершине треугольника равен 180-(30+30)=120 градусов
В равнобедренном тр-ке АВС ∠ВАС=(180-120)/2=30°. Опустим высоту ВМ на сторону АС. АМ=МС. В тр-ке АВМ АМ=АВ·cos30=3√3 см. АС=2АМ=6√3 см. ВМ=АВ·sin30=3 cм. В тр-ке АВА1 ВА1²=АА1²+АВ²=8²+6²=100, ВА1=10 см. В тр-ке А1С1В проведём высоту ВК на сторону А1С1. ВК²=ВА1²-А1К². В прямоугольнике АСС1А1 А1К=АМ=3√3 см, значит ВК²=10²-(3√3)²=73, ВК=√73 см. а) Площадь сечения А1С1В: S=А1С1·ВК/2=6√3·√73/2=3√219 см² - это ответ. б) В тр-ке ВКМ МК⊥А1С1, ВК⊥А1С1, значит ∠ВКМ - угол между плоскостями А1С1В и АСС1 (А1С1 принадлежит обоим плоскостям) tg(BKM)=ВМ/МК=3/8 - это ответ.
№2 Обозначим боковую сторону через Х
тогда основание будет Х+12. составляем уравнение Х+Х+(Х+12)=45,
3Х=33,Х=11 Боковая сторона равна 11см,основание равно 23см
№3 Углы ANDиCND вертикальные,а значит равны по 104 градуса. Угол ANC смежный с углом AND.Сумма смежных углов равна 180 градусов,тогда угол ANC=180-104=76
№4 Т.к. боковая сторона в 2 раза больше высоты,тоугол,лежащий напротив высоты равен 30 градусов,а это угол при основании равнобедренного треугольника.тогда угол при вершине треугольника равен 180-(30+30)=120 градусов
Опустим высоту ВМ на сторону АС. АМ=МС.
В тр-ке АВМ АМ=АВ·cos30=3√3 см.
АС=2АМ=6√3 см.
ВМ=АВ·sin30=3 cм.
В тр-ке АВА1 ВА1²=АА1²+АВ²=8²+6²=100,
ВА1=10 см.
В тр-ке А1С1В проведём высоту ВК на сторону А1С1. ВК²=ВА1²-А1К².
В прямоугольнике АСС1А1 А1К=АМ=3√3 см, значит
ВК²=10²-(3√3)²=73,
ВК=√73 см.
а) Площадь сечения А1С1В: S=А1С1·ВК/2=6√3·√73/2=3√219 см² - это ответ.
б) В тр-ке ВКМ МК⊥А1С1, ВК⊥А1С1, значит ∠ВКМ - угол между плоскостями А1С1В и АСС1 (А1С1 принадлежит обоим плоскостям)
tg(BKM)=ВМ/МК=3/8 - это ответ.