Навколо кулі описано правильну чотирикутну піраміду, всі бічні грані якої утворюють з площиною основи кут β. Визначити об’єм кулі, якщо висота піраміди дорівнює h. Обчислити, якщо h=9 см, β=60°.
1. Треугольник РОС равен треугольнику АОК по двум углам и стороне между ними (<POC=<AOK - вертикальные, <PCO=<OAK - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС, а АО=ОС - диагональ АС в точке О делится пополам). Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак). Что и требовалось доказать. 2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20. Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20. ответ: Sapkd=20. 3. По Пифагору СК=√(64+25)=√89. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда PK=√41.
★☆★ Чертёж смотрите во вложении ★☆★
Дано:
Отрезки АМ и ВК пересекаются в точке О.
Точка О — серединная точка для отрезков АМ и ВК (ОА = ОМ ; ОВ = ОК).
Доказать:
АВ║МК.
Доказательство:
ⵈ◊ⵈ Для седьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим ΔАОВ и ΔМОК.
ОА = ОМ (по условию).
ОВ = ОК (по условию).
∠АОВ = ∠МОК (как вертикальные).
Следовательно, ΔАОВ = ΔМОК по двум сторонам и углу между ними (первый признак равенства треугольников).
▸В равных треугольниках против равных сторон лежат равные углы◂
ОВ = ОК.
Следовательно, ∠ВАО = ∠ОМК.
Рассмотрим прямые АВ и МК при секущей АМ.
▸Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны◂
Накрест лежащие ∠ВАО = ∠ОМК (по выше доказанному), следовательно, АВ║МК (по выше сказанному).
ⵈ◊ⵈ Для восьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим получившиеся выпуклый четырёхугольник АКМВ.
АМ и ВК — диагонали.
▸Если диагонали выпуклого четырёхугольника точкой пересечения делятся пополам, то такой четырёхугольник — параллелограмм◂
ОА = ОМ (по условию).
ОВ = ОК (по условию).
Следовательно, четырёхугольник АКМВ — параллелограмм.
▸Параллелограмм — четырёхугольник, противоположные стороны которого параллельны ◂
Поэтому, по выше сказанному —
АВ║МК ; АК║ВМ
Объяснение:
Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак).
Что и требовалось доказать.
2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20.
Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20.
ответ: Sapkd=20.
3. По Пифагору СК=√(64+25)=√89.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда
PK=√41.