Навколо правильного шестикутника ABCDEF зі стороною 8см описано коло із центром О. Знайдіть плошу сектора АСЕ.. Укажіть якій відрізок є образом сторони СД при повороті навколоцентра О проти годинникової стрілки на кут 120°
Пусть в ромбе ABCD углы B и D равны 60 градусам (противоположные углы ромба равны). Рассмотрим треугольник ABC. Он равнобедренный, так как AB=BC, угол при вершине равен 60 градусам. Значит, 2 других угла также равны 60 градусам и треугольник ABC является равносторонним. Тогда AC=AB=BC=3 см. Высота ромба AH равна высоте равностороннего треугольника AH со стороной 3см. Площадь равностороннего треугольника со стороной a равна √3a²/4, значит, площадь треугольника ABC равна 9√3/4. По формуле площади, S=1/2ah, h=2S/a, где h - высота треугольника, a - сторона, к которой проведена высота, S - площадь треугольника. Значит, AH=(9√3/2)/3=3√3/2 см.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. В правильном шестиугольнике внутренние углы равны 120°. Плоскость ab1d1 - это сечение ab1d1e - прямоугольник. Проведем диагональ с1f1. Это диаметр описанной вокруг правильного шестиугольника окружности и поэтому c1f1=2 (так как радиус равен стороне шестиугольника и равен 1). Диаметр c1f1 перпендикулярен хорде b1c1. В прямоугольном треугольнике h1c1d1 угол h1c1d1 равен 60°, а <h1d1c1=30°. Следовательно, c1h1=1/2 (как катет против угла 30°, равен половине гипотенузы - стороны шестиугольника). Тогда h1f1=2-(1/2)=1,5. Диагональ боковой грани по Пифагору ab1 = √(1+4) = √5. А синус угла ab1a1 = aa1/ab1 = 2/√5 = 2√5/5. В прямоугольном треугольнике f1hh1 искомое расстояние (перпендикуляр f1h) равно sinα*f1h1 = (2√5/5)*1,5 = 0,6√5. ответ: расстояние от точки f1 до плоскости ab1d1 равно 0,6√5.
В прямоугольном треугольнике h1c1d1 угол h1c1d1 равен 60°, а <h1d1c1=30°.
Следовательно, c1h1=1/2 (как катет против угла 30°, равен половине гипотенузы - стороны шестиугольника). Тогда h1f1=2-(1/2)=1,5.
Диагональ боковой грани по Пифагору ab1 = √(1+4) = √5.
А синус угла ab1a1 = aa1/ab1 = 2/√5 = 2√5/5.
В прямоугольном треугольнике f1hh1 искомое расстояние (перпендикуляр f1h) равно sinα*f1h1 = (2√5/5)*1,5 = 0,6√5.
ответ: расстояние от точки f1 до плоскости ab1d1 равно 0,6√5.