∠АВО=∠АВК-∠ОВК=120°-90°=30° Треугольник АВО - равнобедренный (АО=ВО=3см) ∠АОВ=120° (180°-30°-30°) По теореме косинусов АВ²=3²+3²-2·3·3·сos120°=27 AB=3√3 см Обозначим СО=х По свойству касательной и секущей: произведение секущей на её внешнюю часть равно квадрату касательной, получаем равенство ВК²=КС·КА ВК²=х·(х+6) По теореме косинусов из треугольника АВК: АК²=АВ²+ВК²-2АВ·ВК·cos∠ABK; (x+6)²=(3√3)²+x(x+6)-2·3√3·√x(x+6)·(-1/2); x²+12x+36=27+x²+6x+3√3·√x(x+6); 9+6x=3√3·√x(x+6); Возводим в квадрат 81+108х+36х²=27х²+162х 9х²-54х+81=0 х²-6х+9=0 х=3
ВК²=х(х+6)=3·(3+6)=27 ВК=3√3 см S=AB·BK·sin∠ABK/2=(3√3)·(3√3)·√3/4=27√3/4 кв. см
Треугольник АВО - равнобедренный (АО=ВО=3см)
∠АОВ=120° (180°-30°-30°)
По теореме косинусов
АВ²=3²+3²-2·3·3·сos120°=27
AB=3√3 см
Обозначим
СО=х
По свойству касательной и секущей:
произведение секущей на её внешнюю часть равно квадрату касательной, получаем равенство
ВК²=КС·КА
ВК²=х·(х+6)
По теореме косинусов из треугольника АВК:
АК²=АВ²+ВК²-2АВ·ВК·cos∠ABK;
(x+6)²=(3√3)²+x(x+6)-2·3√3·√x(x+6)·(-1/2);
x²+12x+36=27+x²+6x+3√3·√x(x+6);
9+6x=3√3·√x(x+6);
Возводим в квадрат
81+108х+36х²=27х²+162х
9х²-54х+81=0
х²-6х+9=0
х=3
ВК²=х(х+6)=3·(3+6)=27
ВК=3√3 см
S=AB·BK·sin∠ABK/2=(3√3)·(3√3)·√3/4=27√3/4 кв. см
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .