1. 40 (вписанный угол, значит делим дугу, на которую он опирается, на два) 2. 160 (вписанный угол; чтобы найти дугу, на которую опирается, нужно умножить угол на два) 3. 30 (углы опирающиеся на одну дугу равны) 4. 150 (центральный угол в два раза больше вписанного) 5. Угол опирающийся на диаметр равен 90 6. Угол В вписанный => делим дугу на два = 65; угол В и угол А равны (равнобедренный треугольник) => угол А = 65
7. Треугольник АОВ равнобедренный (ОВ=ОА как радиусы) => угол В=угол А => угол АОВ= 180-35-35=110; угол ВОС смежный => 180-110=70 => дуга равна центральному углу => ответ 70
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80
2. 160 (вписанный угол; чтобы найти дугу, на которую опирается, нужно умножить угол на два)
3. 30 (углы опирающиеся на одну дугу равны)
4. 150 (центральный угол в два раза больше вписанного)
5. Угол опирающийся на диаметр равен 90
6. Угол В вписанный => делим дугу на два = 65; угол В и угол А равны (равнобедренный треугольник) => угол А = 65
7. Треугольник АОВ равнобедренный (ОВ=ОА как радиусы) => угол В=угол А => угол АОВ= 180-35-35=110; угол ВОС смежный => 180-110=70 => дуга равна центральному углу =>
ответ 70