Пусть задан треугольник со сторонами a, b и с. При этом сумма длин двух любых сторон треугольника должна быть больше длины третьей стороны, то есть a+b>c, b+c>a и a+c>b. И необходимо найти градусную меру всех углов этого треугольника. Пусть угол между сторонами a и b обозначен как α, угол между b и c как β, а угол между c и a как γ.
Теорема косинусов звучит так: квадрат длины стороны треугольника равен сумме квадратов двух других длин его сторон минус удвоенное произведение этих длин сторон на косинус угла между ними. То есть составьте три равенства: a²=b²+c²−2×b×c×cos(β); b²=a²+c²−2×a×c×cos(γ); c²=a²+b²−2×a×b×cos(α).
Из полученных равенств выразите косинусы углов: cos(β)=(b²+c²−a²)÷(2×b×c); cos(γ)=(a²+c²−b²)÷(2×a×c); cos(α)=(a²+b²−c²)÷(2×a×b). Теперь, когда известны косинусы углов треугольника, чтобы найти сами углы воспользуйтесь таблицами Брадиса или возьмите из этих выражений арккосинусы: β=arccos(cos(β)); γ=arccos(cos(γ)); α=arccos(cos(α)).
Например, пусть a=3, b=7, c=6. Тогда cos(α)=(3²+7²−6²)÷(2×3×7)=11/21 и α≈58,4°; cos(β)=(7²+6²−3²)÷(2×7×6)=19/21 и β≈25,2°; cos(γ)=(3²+6²−7²)÷(2×3×6)=-1/9 и γ≈96,4°.
Эту же задачу можно решить другим через площадь треугольника. Сначала найдите полупериметр треугольника по формуле p=(a+b+c)÷2. Затем посчитайте площадь треугольника по формуле Герона S=√(p×(p−a)×(p−b)×(p−c)), то есть площадь треугольника равна квадратному корню из произведения полупериметра треугольника и разностей полупериметра и каждой из сторон треугольника.
С другой стороны, площадь треугольника равна половине произведения длин двух сторон на синус угла между ними. Получается S=0,5×a×b×sin(α)=0,5×b×c×sin(β)=0,5×a×c×sin(γ). Теперь из этой формулы выразите синусы углов и подставьте полученное в 5 шаге значение площади треугольника: sin(α)=2×S÷(a×b); sin(β)=2×S÷(b×c); sin(γ)=2×S÷(a×c). Таким образом, зная синусы углов, чтобы найти градусную меру, используйте таблицы Брадиса или посчитайте арксинусы этих выражений: β=arccsin(sin(β)); γ=arcsin(sin(γ)); α=arcsin(sin(α)).
Например, пусть дан такой же треугольник со сторонами a=3, b=7, c=6. Полупериметр равен p=(3+7+6)÷2=8, площадь S=√(8×(8−3)×(8−7)×(8−6))=4√5. Тогда sin(α)=2×4√5÷(3×7)=8√5/21 и α≈58,4°; sin(β)=2×4√5÷(7×6)=4√5/21 и β≈25,2°; sin(γ)=2×4√5÷(3×6)=4√5/9 и γ≈96,4°.
Задача 1
Решение(согласно моему рисунку)
1) Проведем высоту ВН.
2) Рассмотрим четырехугольник АВНД
Он будет параллелограммом, т.к. АВ || СД (как основания), а АД || ВН (т.к. высоты к одной стороне)
Тогда, т.к. АВНД - параллелограмм, АВ=ДН=6 см., АД=ВН (по св-ву параллелограмма)
3) Рассмотрим прямоугольный треугольника ВНС
НС=10 - 6=4 см.
Угол С=60° (по условию)
Тогда угол НВС=90° - 60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Гипотенуза ВС=8 см. (это и будет большая боковая сторона)
ВС²=ВН² + НС² (теорема Пифагора)
ВН²=64 - 16
ВН²=48
ВН=4√3
4) ВН=АД=4√3, тогда АД=4√3 (это и будет меньшая боковая сторона)
ответ: АД=4√3 см., ВС=8 см.
Теорема косинусов звучит так: квадрат длины стороны треугольника равен сумме квадратов двух других длин его сторон минус удвоенное произведение этих длин сторон на косинус угла между ними. То есть составьте три равенства: a²=b²+c²−2×b×c×cos(β); b²=a²+c²−2×a×c×cos(γ); c²=a²+b²−2×a×b×cos(α).
Из полученных равенств выразите косинусы углов: cos(β)=(b²+c²−a²)÷(2×b×c); cos(γ)=(a²+c²−b²)÷(2×a×c); cos(α)=(a²+b²−c²)÷(2×a×b). Теперь, когда известны косинусы углов треугольника, чтобы найти сами углы воспользуйтесь таблицами Брадиса или возьмите из этих выражений арккосинусы: β=arccos(cos(β)); γ=arccos(cos(γ)); α=arccos(cos(α)).
Например, пусть a=3, b=7, c=6. Тогда cos(α)=(3²+7²−6²)÷(2×3×7)=11/21 и α≈58,4°; cos(β)=(7²+6²−3²)÷(2×7×6)=19/21 и β≈25,2°; cos(γ)=(3²+6²−7²)÷(2×3×6)=-1/9 и γ≈96,4°.
Эту же задачу можно решить другим через площадь треугольника. Сначала найдите полупериметр треугольника по формуле p=(a+b+c)÷2. Затем посчитайте площадь треугольника по формуле Герона S=√(p×(p−a)×(p−b)×(p−c)), то есть площадь треугольника равна квадратному корню из произведения полупериметра треугольника и разностей полупериметра и каждой из сторон треугольника.
С другой стороны, площадь треугольника равна половине произведения длин двух сторон на синус угла между ними. Получается S=0,5×a×b×sin(α)=0,5×b×c×sin(β)=0,5×a×c×sin(γ). Теперь из этой формулы выразите синусы углов и подставьте полученное в 5 шаге значение площади треугольника: sin(α)=2×S÷(a×b); sin(β)=2×S÷(b×c); sin(γ)=2×S÷(a×c). Таким образом, зная синусы углов, чтобы найти градусную меру, используйте таблицы Брадиса или посчитайте арксинусы этих выражений: β=arccsin(sin(β)); γ=arcsin(sin(γ)); α=arcsin(sin(α)).
Например, пусть дан такой же треугольник со сторонами a=3, b=7, c=6. Полупериметр равен p=(3+7+6)÷2=8, площадь S=√(8×(8−3)×(8−7)×(8−6))=4√5. Тогда sin(α)=2×4√5÷(3×7)=8√5/21 и α≈58,4°; sin(β)=2×4√5÷(7×6)=4√5/21 и β≈25,2°; sin(γ)=2×4√5÷(3×6)=4√5/9 и γ≈96,4°.