Трапеция равнобокая, значит высота делит большее основание на два отрезка, меньший из которых равен полуразности двух оснований (свойство), то есть равен "а". Тогда CosA= a/2a =1/2. То есть <A=<D=60° (трапеция равнобокая). <B=<C=180°-60° =120° (так как углы трапеции, прилежащие к боковым сторонам, в сумме равны 180°). Итак, углы трапеции равны <A=<D=60°, <B=<C=120°, а так как боковая сторона (гипотенуза) всегда больше разности большего и меньшего оснований (катета) по теореме о соотношении сторон и углов треугольника, углы при большем основании острые, углы при меньшем основании тупые, что и требовалось доказать.
ответ:
объяснение:
1) 2*9=18- это две стороны по 9, 26-18=8/2=4-это другая сторона, s=9*4=36
2)s=a*a=169, a=13, p=13*4=52
3) s=a*b=96, 3*b=96, b=96/3=32, p=2(a+b)=2(3+32)=70
4)4a=164, a=164/4=41
6)a=x, b=6x, 2(x+6x)=70, 7x=35, x=5, 6x=6*5=30, a=5, b=30, s(пр)=5*30=150, s(кв)=150, (у равновеликих фигур площади равны),
s(кв)=a^2, a^2=150, a=v150=v(25*6)=5v6, p(кв)=4*5v6=20v6
7)s=a^2*v3/4=36*v3/4=9v3
Итак, углы трапеции равны <A=<D=60°, <B=<C=120°, а так как боковая сторона (гипотенуза) всегда больше разности большего и меньшего оснований (катета) по теореме о соотношении сторон и углов треугольника, углы при большем основании острые, углы при меньшем основании тупые, что и требовалось доказать.