1) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1 Пусть B₁C = x, тогда AB₁ = 2x x + 2x = 9 3x = 9 x = 3 B₁C = 3, AB₁ = 6 AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис. ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3 2) CO ·OD = AO · OB CO = OD = x x² = 4·25 x² = 100 x = 10 CD = 20 3) ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒ DK / KB = FD / BM = 1/2
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1
Пусть B₁C = x, тогда AB₁ = 2x
x + 2x = 9
3x = 9
x = 3
B₁C = 3, AB₁ = 6
AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис.
ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3
2)
CO ·OD = AO · OB
CO = OD = x
x² = 4·25
x² = 100
x = 10
CD = 20
3)
ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒
DK / KB = FD / BM = 1/2
По теореме о сумме углов треугольника имеем:
Угол А + угол В + угол С = 180 градусов;
44 градуса + угол В + 90 градусов = 180 градусов;
угол В = 180 градусов-44градуса-90градусов=46 градусов.
По теореме синусов имеем: АС/sinB=AB/sinC; 15/sin46 = AB/sin90 АВ=15*sin90/sin46=15*1/0.7193=приблизительно 20