Найди координаты точки А1 в которую переходит точка А(-6;-4),если точка С(3;-3) при параллельном переносе переходит точку С нужно сдать контрольную до 18:00
Найдем точку пересечения диагоналей прямоугольника. Координаты середины вектора АС (диагональ) равны: О(3,5;0,5). Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}. Это половины диагоналей и угол между ними находим по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)]. cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2. Вектор АВ{1;3} Вектор ВС{6;-2} (ABxBC)=6+(-6)=0. Значит стороны АВ и ВС перпендикулярны. Следовательно, АВСD - прямоугольник.
Вот решение, попробуйте разобраться. :) Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB. Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи) Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB; то есть MC = MA + MB
Координаты вектора равны разности соответствующих координат точек его конца и начала.
Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}.
Это половины диагоналей и угол между ними находим по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае:
cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)].
cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или
cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2.
Вектор АВ{1;3}
Вектор ВС{6;-2}
(ABxBC)=6+(-6)=0.
Значит стороны АВ и ВС перпендикулярны.
Следовательно, АВСD - прямоугольник.
Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB.
Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи)
Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB;
то есть MC = MA + MB