Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
1. Все грани куба - квадраты. Тогда ребро куба: а = √9 = 3 см V = a³ = 3 = 27 см³
2. а = 2 см - ребро основания призмы, α = 30° - угол в основании, h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3. В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см. ОС = а√3/3 = 5√3/3 см как радиус описанной окружности. ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO V = 1/3 · a²√3/4 · SO V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³
2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³