1)на двух материках : в Северной и Южной Америке, западная часть обеих материков. между 66°градусов до 56° градусов
2) горы протянулись в направлении север-юг, длина приблизительно 12 000 км.
3) почти на всём протяжении является водоразделом между бассейнами Атлантического и Тихого океанов, а также резко выраженной климатической границей. Кордильеры лежат во всех географических поясах (кроме субантарктического и антарктического) и отличаются большим разнообразием ландшафтов и ярко выраженной высотной поясностью. Снеговая граница на Аляске - на высоте 600 м, на Огненной Земле -500-700 м в Боливии и Южном Перу поднимается до 6000-6500 м. В северо-западной части Кордильер Северной Америки и на юго-востоке Анд ледники спускаются до уровня океана, в жарком поясе они покрывают лишь наиболее высокие вершины. Общая площадь оледенений -около 90 тысяч км (в Кордильерах Северной Америки - 67 тыс. км в Андах -около 20 тыс. км)))
1)на двух материках : в Северной и Южной Америке, западная часть обеих материков. между 66°градусов до 56° градусов
2) горы протянулись в направлении север-юг, длина приблизительно 12 000 км.
3) почти на всём протяжении является водоразделом между бассейнами Атлантического и Тихого океанов, а также резко выраженной климатической границей. Кордильеры лежат во всех географических поясах (кроме субантарктического и антарктического) и отличаются большим разнообразием ландшафтов и ярко выраженной высотной поясностью. Снеговая граница на Аляске - на высоте 600 м, на Огненной Земле -500-700 м в Боливии и Южном Перу поднимается до 6000-6500 м. В северо-западной части Кордильер Северной Америки и на юго-востоке Анд ледники спускаются до уровня океана, в жарком поясе они покрывают лишь наиболее высокие вершины. Общая площадь оледенений -около 90 тысяч км (в Кордильерах Северной Америки - 67 тыс. км в Андах -около 20 тыс. км)))
∟DBK = 60°
Объяснение:
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.